Connections Between Single-Level and Bilevel Multiobjective Optimization

نویسندگان

  • Sauli Ruuska
  • Kaisa Miettinen
  • Margaret M. Wiecek
چکیده

The relationship between bilevel optimization and multiobjective optimization has been studied by several authors and there have been repeated attempts to establish a link between the two. We unify the results from the literature and generalize them for bilevel multiobjective optimization. We formulate sufficient conditions for an arbitrary binary relation to guarantee equality between the efficient set produced by the relation and the set of optimal solutions to a bilevel problem. In addition, we present specially structured bilevel multiobjective optimization problems motivated by real-life applications and an accompanying binary relation permitting their reduction to single-level multiobjective optimization problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necessary Optimality Conditions for Multiobjective Bilevel Programs

The multiobjective bilevel program is a sequence of two optimization problems, with the upper-level problem being multiobjective and the constraint region of the upper level problem being determined implicitly by the solution set to the lower-level problem. In the case where the Karush-Kuhn-Tucker (KKT) condition is necessary and sufficient for global optimality of all lower-level problems near...

متن کامل

Multiobjective security game with fuzzy payoffs

A multiobjective security game problem with fuzzy payoffs is studied in this paper. The problem is formulated as a bilevel programming problem with fuzzy coefficients. Using the idea of nearest interval approximation of fuzzy numbers, the problem is transformed into a bilevel programming problem with interval coefficients. The Karush-Kuhn-Tucker conditions is applied then to reduce the problem ...

متن کامل

New Optimality Conditions for the Semivectorial Bilevel Optimization Problem New Optimality Conditions for the Semivectorial Bilevel Optimization Problem Herstellung: Medienzentrum Der Tu Bergakademie Freiberg New Optimality Conditions for the Semivectorial Bilevel Optimization Problem

The paper is concerned with the optimistic formulation of a bilevel optimization problem with multiobjective lower-level problem. Considering the scalarization approach for the multiobjective program, we transform our problem into a scalar-objective optimization problem with inequality constraints by means of the well-known optimal value reformulation. Completely detailed first-order necessary ...

متن کامل

Multiobjective bilevel optimization

In this work nonlinear non-convex multiobjective bilevel optimization problems are discussed using an optimistic approach. It is shown that the set of feasible points of the upper level function, the so-called induced set, can be expressed as the set of minimal solutions of a multiobjective optimization problem. This artificial problem is solved by using a scalarization approach by Pascoletti a...

متن کامل

New Optimality Conditions for the Semivectorial Bilevel Optimization Problem

The paper is concerned with the optimistic formulation of a bilevel optimization problem with multiobjective lower-level problem. Considering the scalarization approach for the multiobjective program, we transform our problem into a scalar-objective optimization problem with inequality constraints by means of the well-known optimal value reformulation. Completely detailed first-order necessary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 153  شماره 

صفحات  -

تاریخ انتشار 2012